

L'ACQUA CHE CONTA

MA QUANTA MATEMATICA C'È NELL'ACQUA?

Matematica nell'acqua

Lo scopo del nostro lavoro è quello di andare alla scoperta della matematica che si può incontrare grazie all'acqua.

Abbiamo analizzato:

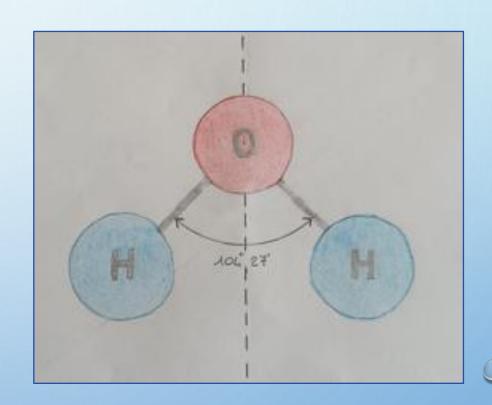
- ✓ LA MOLECOLA DELL'ACQUA
- ✓ LA SOLIDIFICAZIONE DELL'ACQUA
- ✓I FIOCCHI DI NEVE
- ✓ LA MISURA DEL VOLUME DEL LAVELLO

La molecola dell'acqua

E' formata da due atomi di idrogeno e da uno di ossigeno; i due atomi di idrogeno sono simmetrici rispetto all'asse passante per l'atomo di ossigeno e i tre atomi H-O-H formano un angolo di $104,45^{\circ}$ che nel sistema sessagesimale corrisponde a $104^{\circ}27'$.

45:100 = x:60

x = 45.60:100 = 27



L'acqua diventa ghiaccio

Abbiamo condotto un esperimento sul volume dell'acqua e del ghiaccio.

- ✓ Abbiamo riempito un cilindro graduato con diverse quantità di acqua.
- √ Abbiamo inserito il cilindro nel congelatore.
- ✓ Sono stati registrati i dati relativi al volume dell'acqua prima e dopo il congelamento.

Livello dell'acqua	Livello del ghiaccio
200 ml	220 ml
300 ml	325 ml
400 ml	430 ml

Differenza del livello dell'acqua	Differenza del livello del ghiaccio
100 ml	5 ml
100 ml	5 ml

Osservando i dati trovati, vediamo che sia la variazione del livello dell'acqua che quella del livello del ghiaccio sono costanti.

Rappresentando gli stessi dati sul piano cartesiano, notiamo che i punti che hanno come ascissa il livello dell'acqua e come ordinata il corrispondente livello del ghiaccio, sono allineati (appartengono alla stessa retta); quindi le grandezze sono direttamente proporzionali.

Lo studio dei fiocchi di neve

- ✓ Partiamo da Keplero che pubblica il breve trattato ((Strena seu de nive sexangula)).
- ✓In occasione del Capodanno 1609 (o 1610), è invitato dal suo amico Matthäus Wacker von Wackenfels, ma realizza di non avere con sé alcun dono.
- ✓ Camminando sul ponte Carlo V a Praga, Keplero osserva la bellezza dei fiocchi di neve e pensa che uno di essi potrebbe essere il migliore dei doni.

Keplero e i fiocchi di neve

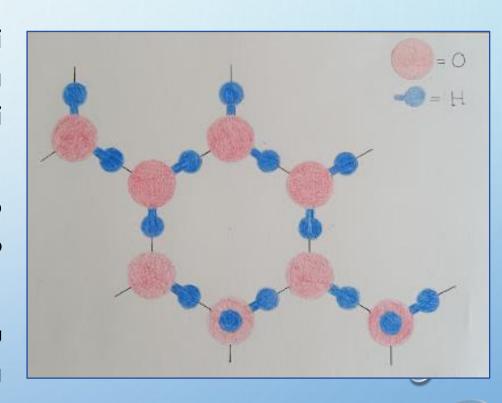
- √Keplero gioca con le parole:
- √In latino neve si dice ((nix))
- √In tedesco niente si dice ((nicht))
- ✓I due suoni sono molto simili e quindi Keplero decide di regalare all'amico le sue riflessioni sul fiocco di neve e sulla sua forma esagonale, sul «Niente».

«Ecco una strenna d'elezione per un amatore del Niente e degna di essere offerta da un Matematico che non ha Niente e non riceve Niente, perché i fiocchi cadono dal cielo e sono simili alle stelle [...]. Vogliate dunque ricevere in tutta serenità questa approssimazione del Niente e, se Voi l'apprezzate, trattenete il fiato, per paura di ritrovarVi con Niente [...]. Ecco allora perché esaminare il motivo per cui le nevi, alla loro prima caduta, [...] hanno, ogni volta, sei raggi.»

> IC Foscolo Classe 1°L L'acqua che conta

Le spiegazioni di Keplero

- ✓I cristalli di neve sono il risultato dell'aggregazione di gocce di acqua di forma sferica che interagendo tra loro raggiungono l'equilibrio solamente disponendosi secondo precise forme esagonali.
- ✓II fiocco di neve nell'aria è tridimensionale, con 6 punte dirette come i vertici di un ottaedro e cadendo al suolo si appiattisce come un esagono.
- ✓ Le gocce d'acqua (sferiche) si «impacchettano» il più strettamente possibile, dando origine di preferenza a configurazioni esagonali.



Le spiegazioni di Keplero

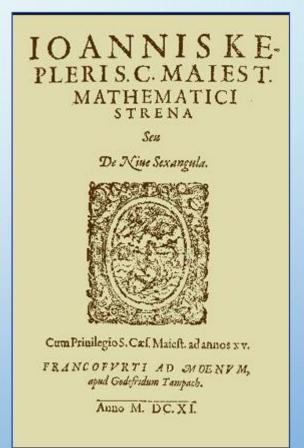
La forma esagonale viene giustificata da Keplero perché:

- Î un poligono regolare
- √tassella completamente il piano
- √ compare sia nel mondo inanimato che in quello animato

Keplero e i modelli matematici

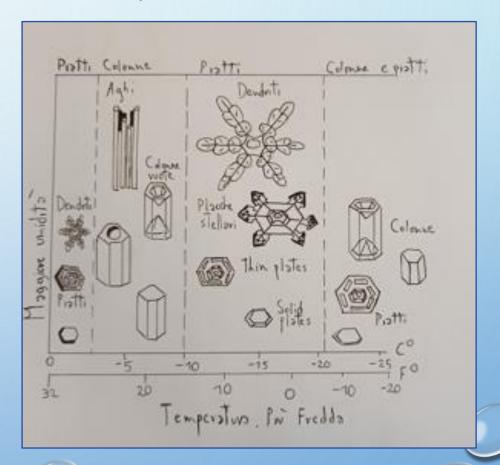
Keplero è un precursore della modellistica in matematica in quanto costruisce un «modello» per spiegare la forma esagonale dei fiocchi di neve.

Ragiona «COME SE» fossero composti da particelle elementari.



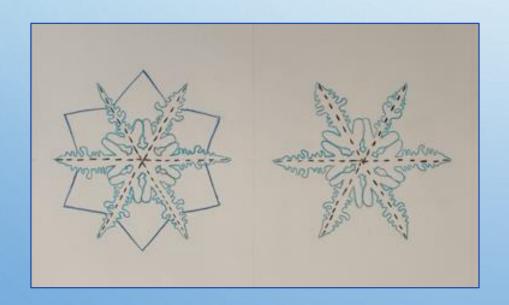
I fiocchi di neve dopo Keplero

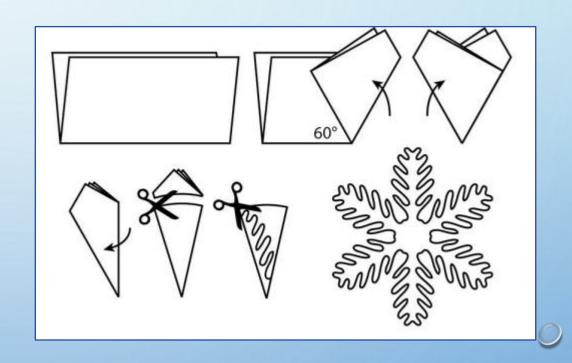
- ✓ Lo studio sui fiocchi di neve è proseguito negli anni successivi e si è giunti alla costruzione del diagramma di Nakaya che rappresenta la forma dei cristalli in relazione a umidità e temperatura.
- ✓ La forma esagonale dipende dai legami chimici per cui, nella struttura del ghiaccio, idrogeno e ossigeno si dispongono in strutture esagonali.
- ✓ La simmetria esagonale dei cristalli di neve è una manifestazione macroscopica della disposizione interna degli atomi nel ghiaccio.



La costruzione dei fiocchi di neve

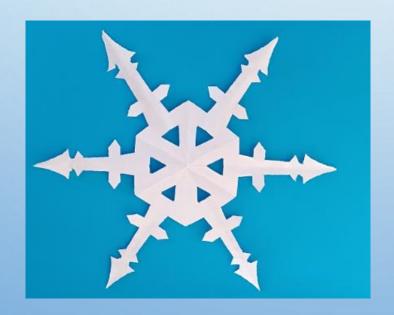
I fiocchi di neve sono strutture con tre assi di simmetria in quanto si basano sulla forma dell'esagono regolare.

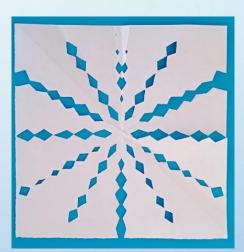


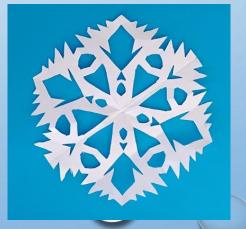


I nostri fiocchi di neve

Abbiamo costruito con carta e forbici alcuni fiocchi di neve, seguendo le istruzioni precedenti.







IC Foscolo Classe 1°L L'acqua che conta

Il volume del lavello

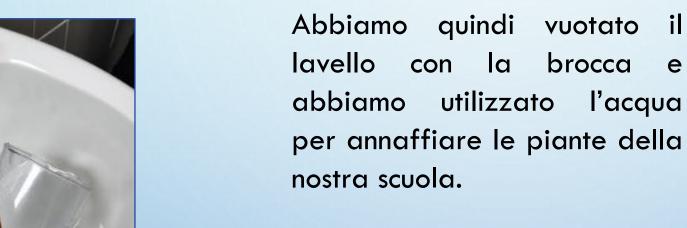
Abbiamo misurato il volume del lavello seguendo due metodi:

- 1. misurando la sua capacità
- applicando la formula per il calcolo del volume e facendo gli opportuni arrotondamenti

Il volume del lavello...PIENO

- ✓ Abbiamo misurato il volume del lavello riempiendolo con una brocca graduata.
- ✓ Abbiamo messo il tappo, lo abbiamo riempito d'acqua fino all'orlo e abbiamo visto che contiene 15,5 litri d'acqua.
- ✓ Dato che $1l = 1dm^3$, il volume del lavello è di $15,5 \ dm^3$.

L'acqua non si spreca!



Il volume del lavello ...VUOTO

IGO FOSCOLO

- ✓ Ci siamo chiesti come misurare il volume del lavello senza riempirlo d'acqua.
- ✓ Abbiamo disegnato la sagoma del lavello su un foglio di carta di giornale e abbiamo misurato la sua profondità con un righello.

IC Foscolo Classe 1°L L'acqua che conta

Il volume del lavelloVUOTO: difficoltà

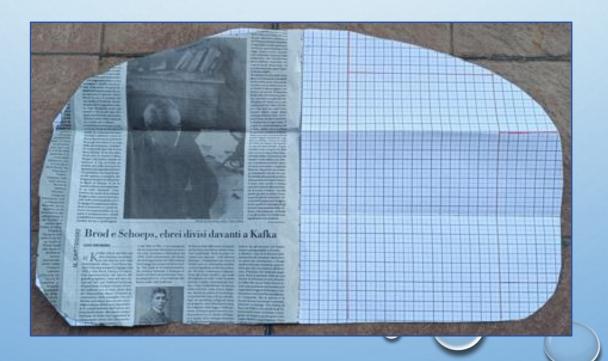
✓II bordo del lavello è una linea curva per cui abbiamo dovuto calcolare la sua superficie (che è curvilinea) senza ricorrere alle solite formule.

Abbiamo deciso di trasformare un foglio protocollo in un reticolo in cui ogni quadratino corrisponde ad $1 \, cm^2$ e poi contare approssimando lungo i bordi curvilinei.

✓II fondo del lavello non è del tutto piatto, quindi abbiamo dovuto misurare la profondità in punti diversi.

Abbiamo fatto la media tra la profondità minima e quella massima misurate.

Abbiamo piegato la sagoma a metà e abbiamo verificato che il lavello è simmetrico; per questo motivo abbiamo deciso di lavorare solo su metà sagoma per calcolare l'area della superficie del lavello.



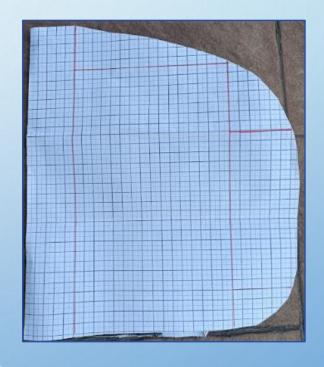
IC Foscolo Classe 1°L L'acqua che conta

Il volume del lavello ...VUOTO: la sua superficie - primo metodo

- ✓ Abbiamo preso un foglio protocollo a quadretti (col lato di 5 mm) e lo abbiamo quadrettato in modo che ogni quadretto corrisponda a $1\ cm^2$.
- ✓ Abbiamo sovrapposto il foglio centimetrato su metà della sagoma del lavello e abbiamo calcolato da quanti quadratini corrispondenti ciascuno a 1 cm^2 è formata; per comodità di calcolo, abbiamo indicato con delle linee rosse i rettangoli dei quali si può calcolare l'area senza ricorrere ad approssimazioni.

$$\checkmark A = 778 cm^2$$

$$\checkmark A_{tot} = 778 \cdot 2 = 1556 \ cm^2$$



- ✓ Abbiamo utilizzato l'altra metà della sagoma del lavello e l'abbiamo resa rettangolare inserendo lungo le parti curvilinee dei pezzi di carta centimetrata; abbiamo quindi calcolato l'area del rettangolo ottenuto e abbiamo sottratto la parte aggiunta, contando i cm² corrispondenti a quest'ultima.
- ✓ Le due misure differiscono di poco e sono dovute a differenti approssimazioni nel calcolo lungo le linee curve.

$$\checkmark A = 27 \cdot 32 - 81,5 - 10 = 864 - 91,5 = 772,5 \ cm^2$$

$$\checkmark A_{tot} = 772,5 \cdot 2 = 1545 \ cm^2$$

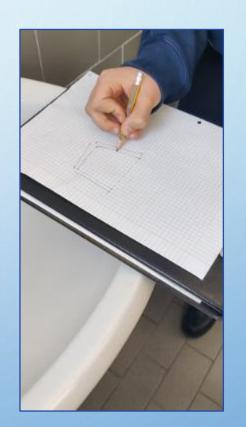
Area del rettangolo	Area delle parti aggiunte
864 cm ²	91,5 cm ²

IC Foscolo Classe 1°L L'acqua che conta

Il volume del lavello ...VUOTO: la misura della superficie

A questo punto abbiamo fatto la media tra i due valori trovati con i procedimenti seguiti:

$$Media_{area} = \frac{1556 + 1545}{2} = \frac{3101}{2} = 1550,5 \text{ cm}^2$$



Il volume del lavello ...VUOTO: la profondità

Il fondo del lavello è concavo per cui abbiamo dovuto fare delle approssimazioni:

√la parte centrale ha una superficie di circa

 $14 \cdot 16 = 224 \ cm^2$ e ha una profondità di $15 \ cm$

√la parte col fondo curvo ha una superficie di circa $775-224=551~cm^2$ e una profondità che stimiamo essere la media tra il suo valore massimo e il suo valore minimo: $\frac{15+2}{2}=\frac{17}{2}=8,5~cm$

Abbiamo calcolato il volume come somma di due volumi, a causa della curvatura del fondo; per comodità abbiamo sfruttato la simmetria e lavorato su metà lavello:

✓ Volume parte centrale (con fondo piatto e altezza di 15 cm):

$$\frac{1}{2}V_c = 14 \cdot 16 \cdot 15 = 3360 \ cm^3$$

✓ Volume parte laterale (con fondo ricurvo e altezza media di 8,5 cm):

$$\frac{1}{2}V_{lat} = (775 - 224) \cdot 8,5 = 551 \cdot 8,5 = 4683,5 \ cm^3$$

✓ Volume totale: $V_{tot} = (3360 + 4683,5) \cdot 2 = 8043,5 \cdot 2 = 16087 \ cm^3$

 \checkmark Equivalenza per trovare i litri: $16087~cm^3=16{,}087~dm^3=16{,}087~l$

Dati a confronto ed errore sperimentale

I due dati differiscono di 0,587 litri.

Sicuramente in entrambi ci sono errori sperimentali legati ad imprecisioni e approssimazioni nelle misurazioni:

- √ della quantità d'acqua versata nel lavello
- ✓ della superficie calcolata con le approssimazioni e utilizzando una sagoma costruita in modo semplice
- √ della profondità del lavello

Volume misurato con l'acqua	Volume calcolato
15,5	16,087

$$\frac{16,087}{15,5} = 1,,037 \qquad 1,037 \cdot 100 = 103,7\%$$

La differenza di circa mezzo litro tra le due misurazioni ci sembra accettabile in rapporto al volume misurato; infatti il rapporto tra i due dati indica una differenza del 3,7%.

L'acqua è vita: l'idrocoltura

Per terminare, un'idrocoltura: la pianta vive per circa 4 mesi nell'acqua, ma poi necessita di essere trasferita nel vaso in quanto ha bisogno dei nutrienti presenti nel terreno.

Ringraziamo i professori Brandi e Salvadori e tutti i collaboratori del progetto «Matematica e Realtà», i nostri genitori che ci hanno permesso di partecipare e i professori Daniela Favale ed Egidio Sandron che ci hanno guidati in questa attività.