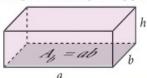

I solidi. Il volume

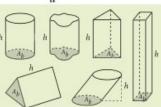
Tratto da "CONTACI" AAVV Ed. Zanichelli

21

Le unità di misura del volume



Volume dei solidi a due basi


Esempio 1 Dimostra che il volume di un parallelepipedo si ottiene moltiplicando l'area di base per l'altezza del parallelepipedo.

Il volume di un parallelepipedo rettangolo è il prodotto delle tre misure: larghezza, profondità e altezza.

$$V = \underline{abh}$$
 Area della base $A_b = ab$.
= $A_b h$

Il volume è il prodotto tra l'area di base e l'altezza.

VOLUME DEI SOLIDI A DUE BASI

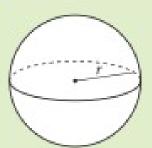
In tutti i solidi a due basi il volume si trova moltiplicando l'area di base per l'altezza.

$$V = A_b \cdot h$$

volume = area di base · altezza del solido

IL VOLUME DEI SOLIDI A PUNTA

Il volume dei solidi a punta si ottiene moltiplicando l'area di base per l'altezza e dividendo il prodotto per tre.



$$V = \frac{A_b \cdot h}{3}$$

volume = area di base · altezza del solido

VOLUME DELLA SFERA

$$V = \frac{4\pi r^3}{3}$$
 rè il raggio della sfera

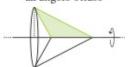
AREA DELLA SUPERFICIE DELLA SFERA

$$S = 4\pi r^2$$

26


Solidi di rotazione

Vediamo alcuni esempi di solidi generati dalla rotazione di un poligono attorno a un asse.

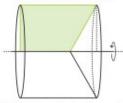

Triangolo

Asse: il lato più lungo

Solido: Due coni che hanno la base coincidente

Triangolo ottusangolo Asse: uno dei lati adiacenti all'angolo ottuso

Solido: Un cono incavato da un cono che ha la stessa base


Trapezio rettangolo Asse: la base maggiore

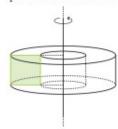
Solido: Un cilindro sormontato da un cono con basi coincidenti

Trapezio rettangolo

Asse: la base minore

Solido: Un cilindro incavato da un cono che ha la stessa base

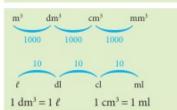
Trapezio isoscele


Asse: base maggiore

Solido: Cilindro sormontato da due coni con basi coincidenti

Quadrato

Asse: retta esterna al quadrato, parallela a due suoi lati



Solido: Cilindro incavato da un cilindro

La rotazione di un poligono attorno a un asse genera idealmente un solido, le cui caratteristiche dipendono dal tipo di poligono che ruota e dalla posizione dell'asse di rotazione. Spesso è possibile calcolare la superficie e il volume di questi solidi scomponendoli in un certo numero di cilindri e di coni.

21 LE UNITÀ DI MISURA DEL VOLUME

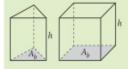
L'unità di misura fondamentale del volume è il metro cubo (m3). Da un'unità di misura all'altra si va di mille in mille.

Esempio

$$1 \text{ m}^3 = 1000 \text{ dm}^3 = 1000 \ell$$

$$8000 \text{ cm}^3 = 8 \text{ dm}^3 = 8 \ell$$

$$10 \text{ cm}^3 = 10 \text{ ml}$$


VOLUME DEI SOLIDI A DUE BASI

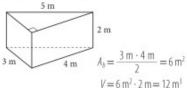
Il volume dei solidi a due basi si calcola moltiplicando l'area di base per l'altezza.

Volume

 $V = A_b \cdot h$

PRISMI

CILINDRI



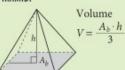
Volume

$$V = A_b \cdot h$$

Area di base
 $A_b = \pi r^2$

Esempi Calcola i volumi dei solidi.

1.


 $h = 1.5 \, \text{m}$ 1,5 m $r = \frac{2 \text{ m}}{2} = 1 \text{ m}$

$$A_b = \pi \cdot (1 \text{ m})^2 \approx 3.1 \text{ m}^2$$

 $V = 3.1 \text{ m}^2 \cdot 1.5 \text{ m} \approx 4.7 \text{ m}^3$

23 IL VOLUME DEI SOLIDI A PUNTA

Il volume dei solidi a punta si calcola moltiplicando l'area di base per l'altezza e dividendo il prodotto per tre.

PIRAMIDI

CONI

Volume

Area di base
$$A_b = \pi r^2$$

VOLUME E SUPERFICIE DELLA SFERA

Volume $V = \frac{4\pi r^3}{3}$

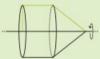
Superficie $A = 4\pi r^2$

Esempio Calcola la superficie e il volume.

 $r = \frac{3 \text{ m}}{2} = 1.5 \text{ m}$ $V = \frac{4 \cdot \pi \cdot (1,5 \text{ m})^3}{3} \approx 14 \text{ m}^3$

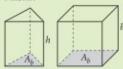
 $A = 4\pi \cdot (1.5 \text{ m})^2 \approx 28 \text{ m}^2$

SOLIDI DI ROTAZIONE


Un solido di rotazione è un solido che si può immaginare generato dalla rotazione di una figura piana attorno a un asse. Il solido che si genera può essere un cilindro, un cono, ma anche un solido più complesso.

r raggio

della sfera



SINTESI DELLE FORMULE

Nei solidi a due basi il volume è dato dal prodotto tra l'area di base e l'altezza. Nei solidi a punta il volume è un terzo del prodotto tra l'area di base e l'altezza.

PRISMA

Volume

$$V = A_b \cdot h$$

A_b area di base h altezza

La superficie laterale stesa sul piano è un rettangolo, i cui lati misurano come il perimetro di base del prisma e come l'altezza del prisma.

CILINDRO

Volume

$$V = A_b \cdot h$$

 ${\cal A}_b$ area di base

Area di base $A_b = \pi r^2$

h altezzar raggio di base

La superficie laterale stesa sul piano è un rettangolo, i cui lati misurano come la circonferenza di base del cilindro e come l'altezza del

rano come la cilindro.

PIRAMIDE

Volume

$$V = \frac{A_b \cdot h}{3}$$

Ab area di base

h altezza

La superficie laterale è formata da triangoli isosceli.

CONO

Volume

$$V = \frac{A_b \cdot h}{3}$$

 A_b area di base

Area di base $A_b = \pi r^2$

h altezza r raggio di base

a apotema

La superficie laterale, stesa sul piano, è un settore circolare. Superficie laterale $S_l = \pi ra$

SFERA

Volume

 $V = \frac{4\pi r^3}{2}$

r raggio della sfera

Superficie

A = 42

UNITÀ DI MISURA

Unità di misura della lunghezza

Nome	Simbolo		
millimetro	mm		
centimetro	cm	1 cm = 10 mm	
decimetro	dm	1 dm = 10 cm	
metro	m	1 m = 10 dm = 100 cm	
decametro	dam	1 dam = 10 m	
ettometro	hm	1 hm = 10 dam	Le unità di misura
kilometro	km	1 km = 10 hm = 1000 m	Le unità di misura della lunghezza
			vanno di 10 in 10.

Unità di misura della superficie

Nome	Simbolo		
millimetro quadrato	mm ²		
centimetro quadrato	cm ²	$1 \text{ cm}^2 = 100 \text{ mm}^2$	
decimetro quadrato	dm ²	$1 dm^2 = 100 cm^2$	
metro quadrato	m ²	$1 \text{ m}^2 = 100 \text{ dm}^2$	
decametro quadrato	dam ²	1 dam ² = 100 m ²	
ettometro quadrato	hm ²	$1 \text{ hm}^2 = 100 \text{ dam}^2$	
kilometro quadrato	km ²	$1 \text{ km}^2 = 100 \text{ hm}^2$	

Le unità di misura della superficie vanno di 100 in 100.

Unità di misura del volume

Nome	Simbolo		
millimetro cubo	mm ³		
centimetro cubo	cm ³	$1 \text{ cm}^3 = 1000 \text{ mm}^3$	
decimetro cubo	dm ³	$1 dm^3 = 1000 cm^3$	
metro cubo	m ³	$1 \text{ m}^3 = 1000 \text{ dm}^3$	Le unità di misura del volume vanno di
kilometro cubo	km³	1 km ³ = 10000000000 m ³	del volume vanno di 1000 in 1000.
			1000 IN 1000.

Le unità di volume che corrispondono a decametri cubi ed ettometri cubi non si usano.

DENSITÀ

Densità (g/cm³) di sostanze che in natura si trovano allo stato solido

Alluminio	2,7	
Calcestruzzo	1,8 - 2,5	
Granito	2,7	
Argento	10,5	
Ghiaccio	0,92	
Sughero	0,20 - 0,35	
Oro	19,3	
Gomma	0,92 - 0,96	
Rame	8,9	
Vetro	2,5	
Piombo	11,3	
Legno (pino)	0,52	
PVC	1,2 - 1,5	
Acciaio	7,8	

Densità (g/cm³) di sostanze che in natura si trovano allo stato liquido o gassoso

Mercurio	13,5
Etanolo	0,78
Anidride carbonica	0,0018
Aria	0,0012
Azoto	0,0021
Acqua	1,0